Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Nat Commun ; 15(1): 3159, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605040

How RNA-binding proteins (RBPs) convey regulatory instructions to the core effectors of RNA processing is unclear. Here, we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins. Unexpectedly, we find that the multivalent contacts do not merely serve effector recruitment but are required for the accuracy of RNA recognition by Unkempt. Systems analyses reveal that multivalent RBP-effector contacts can repurpose the principal activity of an effector for a different function, as we demonstrate for the reuse of the central eukaryotic mRNA decay factor CCR4-NOT in translational control. Our study establishes the molecular assembly and functional principles of an RBP-effector interface.


RNA-Binding Proteins , RNA , Animals , RNA-Binding Proteins/metabolism , RNA/metabolism , RNA Processing, Post-Transcriptional , Peptides/metabolism
2.
Cell Rep ; 43(4): 114098, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38625793

Developing an effective mRNA therapeutic often requires maximizing protein output per delivered mRNA molecule. We previously found that coding sequence (CDS) design can substantially affect protein output, with mRNA variants containing more optimal codons and higher secondary structure yielding the highest protein outputs due to their slow rates of mRNA decay. Here, we demonstrate that CDS-dependent differences in translation initiation and elongation rates lead to differences in translation- and deadenylation-dependent mRNA decay rates, thus explaining the effect of CDS on mRNA half-life. Surprisingly, the most stable and highest-expressing mRNAs in our test set have modest initiation/elongation rates and ribosome loads, leading to minimal translation-dependent mRNA decay. These findings are of potential interest for optimization of protein output from therapeutic mRNAs, which may be achieved by attenuating rather than maximizing ribosome load.


Protein Biosynthesis , RNA Stability , RNA, Messenger , Ribosomes , Ribosomes/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Humans
3.
Nat Struct Mol Biol ; 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38374449

Shortening of messenger RNA poly(A) tails, or deadenylation, is a rate-limiting step in mRNA decay and is highly regulated during gene expression. The incorporation of non-adenosines in poly(A) tails, or 'mixed tailing', has been observed in vertebrates and viruses. Here, to quantitate the effect of mixed tails, we mathematically modeled deadenylation reactions at single-nucleotide resolution using an in vitro deadenylation system reconstituted with the complete human CCR4-NOT complex. Applying this model, we assessed the disrupting impact of single guanosine, uridine or cytosine to be equivalent to approximately 6, 8 or 11 adenosines, respectively. CCR4-NOT stalls at the 0, -1 and -2 positions relative to the non-adenosine residue. CAF1 and CCR4 enzyme subunits commonly prefer adenosine but exhibit distinct sequence selectivities and stalling positions. Our study provides an analytical framework to monitor deadenylation and reveals the molecular basis of tail sequence-dependent regulation of mRNA stability.

4.
bioRxiv ; 2023 Oct 24.
Article En | MEDLINE | ID: mdl-37790431

RNA-binding proteins (RBPs) are key regulators of gene expression, but how RBPs convey regulatory instructions to the core effectors of RNA processing is unclear. Here we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a deeply conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins. Unexpectedly, we find that the multivalent contacts do not merely serve effector recruitment but are required for the accuracy of RNA recognition by the recruiting RBP. Systems analyses reveal that multivalent RBP-effector contacts can repurpose the principal activity of an effector for a different function, as we demonstrate for reuse of the central eukaryotic mRNA decay factor CCR4-NOT in translational control. Our study establishes the molecular assembly and functional principles of an RBP-effector interface, with implications for the evolution and function of RBP-operated regulatory networks.

5.
Commun Biol ; 6(1): 739, 2023 07 17.
Article En | MEDLINE | ID: mdl-37460791

NOT1, NOT10, and NOT11 form a conserved module in the CCR4-NOT complex, critical for post-transcriptional regulation in eukaryotes, but how this module contributes to the functions of the CCR4-NOT remains poorly understood. Here, we present cryo-EM structures of human and chicken NOT1:NOT10:NOT11 ternary complexes to sub-3 Å resolution, revealing an evolutionarily conserved, flexible structure. Through biochemical dissection studies, which include the Drosophila orthologs, we show that the module assembly is hierarchical, with NOT11 binding to NOT10, which then organizes it for binding to NOT1. A short proline-rich motif in NOT11 stabilizes the entire module assembly.


Ribonucleases , Transcription Factors , Humans , Protein Binding , Receptors, CCR4/metabolism , Ribonucleases/chemistry , Transcription Factors/metabolism
6.
Nat Rev Genet ; 24(5): 276-294, 2023 05.
Article En | MEDLINE | ID: mdl-36418462

RNA-binding proteins (RBPs) regulate essentially every event in the lifetime of an RNA molecule, from its production to its destruction. Whereas much has been learned about RNA sequence specificity and general functions of individual RBPs, the ways in which numerous RBPs instruct a much smaller number of effector molecules, that is, the core engines of RNA processing, as to where, when and how to act remain largely speculative. Here, we survey the known modes of communication between RBPs and their effectors with a particular focus on converging RBP-effector interactions and their roles in reducing the complexity of RNA networks. We discern the emerging unifying principles and discuss their utility in our understanding of RBP function, regulation of biological processes and contribution to human disease.


RNA Processing, Post-Transcriptional , RNA , Humans , RNA/genetics , RNA/metabolism , RNA-Binding Proteins/genetics
7.
Nat Commun ; 13(1): 7510, 2022 12 06.
Article En | MEDLINE | ID: mdl-36473845

Half of mammalian transcripts contain short upstream open reading frames (uORFs) that potentially regulate translation of the downstream coding sequence (CDS). The molecular mechanisms governing these events remain poorly understood. Here, we find that the non-canonical initiation factor Death-associated protein 5 (DAP5 or eIF4G2) is required for translation initiation on select transcripts. Using ribosome profiling and luciferase-based reporters coupled with mutational analysis we show that DAP5-mediated translation occurs on messenger RNAs (mRNAs) with long, structure-prone 5' leader sequences and persistent uORF translation. These mRNAs preferentially code for signalling factors such as kinases and phosphatases. We also report that cap/eIF4F- and eIF4A-dependent recruitment of DAP5 to the mRNA facilitates main CDS, but not uORF, translation suggesting a role for DAP5 in translation re-initiation. Our study reveals important mechanistic insights into how a non-canonical translation initiation factor involved in stem cell fate shapes the synthesis of specific signalling factors.


Peptide Initiation Factors , Open Reading Frames/genetics , RNA, Messenger/genetics
9.
Curr Opin Struct Biol ; 77: 102460, 2022 Dec.
Article En | MEDLINE | ID: mdl-36116370

The conserved CCR4-NOT complex initiates the decay of mRNAs by catalyzing the shortening of their poly(A) tails in a process known as deadenylation. Recent studies have provided mechanistic insights into the action and regulation of this molecular machine. The two catalytic enzymatic subunits of the complex hydrolyze polyadenosine RNA. Notably, the non-catalytic subunits substantially enhance the complex's affinity and sequence selectivity for polyadenosine by directly contacting the RNA. An additional regulatory mechanism is the active recruitment of the CCR4-NOT to transcripts targeted for decay by RNA-binding proteins that recognize motifs or sequences residing predominantly in untranslated regions. This targeting and strict control of the mRNA deadenylation process emerges as a crucial nexus during post-transcriptional regulation of gene expression.


RNA Stability , RNA-Binding Proteins , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism
10.
Nat Commun ; 12(1): 7175, 2021 12 09.
Article En | MEDLINE | ID: mdl-34887419

The CCR4-NOT complex acts as a central player in the control of mRNA turnover and mediates accelerated mRNA degradation upon HDAC inhibition. Here, we explored acetylation-induced changes in the composition of the CCR4-NOT complex by purification of the endogenously tagged scaffold subunit NOT1 and identified RNF219 as an acetylation-regulated cofactor. We demonstrate that RNF219 is an active RING-type E3 ligase which stably associates with CCR4-NOT via NOT9 through a short linear motif (SLiM) embedded within the C-terminal low-complexity region of RNF219. By using a reconstituted six-subunit human CCR4-NOT complex, we demonstrate that RNF219 inhibits deadenylation through the direct interaction of the α-helical SLiM with the NOT9 module. Transcriptome-wide mRNA half-life measurements reveal that RNF219 attenuates global mRNA turnover in cells, with differential requirement of its RING domain. Our results establish RNF219 as an inhibitor of CCR4-NOT-mediated deadenylation, whose loss upon HDAC inhibition contributes to accelerated mRNA turnover.


RNA, Messenger/metabolism , Receptors, CCR4/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Adenosine Monophosphate/metabolism , HeLa Cells , Humans , Protein Binding , RNA Stability , RNA, Messenger/chemistry , RNA, Messenger/genetics , Receptors, CCR4/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics
11.
iScience ; 24(6): 102523, 2021 Jun 25.
Article En | MEDLINE | ID: mdl-33997662

Nucleocapsid (N) protein of the SARS-CoV-2 virus packages the viral genome into well-defined ribonucleoprotein particles, but the molecular pathway is still unclear. N-protein is dimeric and consists of two folded domains with nucleic acid (NA) binding sites, surrounded by intrinsically disordered regions that promote liquid-liquid phase separation. Here, we use biophysical tools to study N-protein interactions with oligonucleotides of different lengths, examining the size, composition, secondary structure, and energetics of the resulting states. We observe the formation of supramolecular clusters or nuclei preceding growth into phase-separated droplets. Short hexanucleotide NA forms compact 2:2 N-protein/NA complexes with reduced disorder. Longer oligonucleotides expose additional N-protein interactions and multi-valent protein-NA interactions, which generate higher-order mixed oligomers and simultaneously promote growth of droplets. Phase separation is accompanied by a significant change in protein secondary structure, different from that caused by initial NA binding, which may contribute to the assembly of ribonucleoprotein particles within macromolecular condensates.

12.
bioRxiv ; 2021 Feb 09.
Article En | MEDLINE | ID: mdl-33594360

Nucleocapsid (N) protein of the SARS-CoV-2 virus packages the viral genome into well-defined ribonucleoprotein particles, but the molecular pathway is still unclear. N-protein is dimeric and consists of two folded domains with nucleic acid (NA) binding sites, surrounded by intrinsically disordered regions that promote liquid-liquid phase separation. Here we use biophysical tools to study N-protein interactions with oligonucleotides of different length, examining the size, composition, secondary structure, and energetics of the resulting states. We observe formation of supramolecular clusters or nuclei preceding growth into phase-separated droplets. Short hexanucleotide NA forms compact 2:2 N-protein/NA complexes with reduced disorder. Longer oligonucleotides expose additional N-protein interactions and multi-valent protein-NA interactions, which generate higher-order mixed oligomers and simultaneously promote growth of droplets. Phase separation is accompanied by a significant increase in protein secondary structure, different from that caused by initial NA binding, which may contribute to the assembly of ribonucleoprotein particles within molecular condensates.

13.
RNA ; 27(4): 445-464, 2021 04.
Article En | MEDLINE | ID: mdl-33397688

Pumilio paralogs, PUM1 and PUM2, are sequence-specific RNA-binding proteins that are essential for vertebrate development and neurological functions. PUM1&2 negatively regulate gene expression by accelerating degradation of specific mRNAs. Here, we determined the repression mechanism and impact of human PUM1&2 on the transcriptome. We identified subunits of the CCR4-NOT (CNOT) deadenylase complex required for stable interaction with PUM1&2 and to elicit CNOT-dependent repression. Isoform-level RNA sequencing revealed broad coregulation of target mRNAs through the PUM-CNOT repression mechanism. Functional dissection of the domains of PUM1&2 identified a conserved amino-terminal region that confers the predominant repressive activity via direct interaction with CNOT. In addition, we show that the mRNA decapping enzyme, DCP2, has an important role in repression by PUM1&2 amino-terminal regions. Our results support a molecular model of repression by human PUM1&2 via direct recruitment of CNOT deadenylation machinery in a decapping-dependent mRNA decay pathway.


RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Receptors, CCR4/genetics , Transcription Factors/genetics , Transcriptome , Adenosine Monophosphate , Base Sequence , Binding Sites , Endoribonucleases/genetics , Endoribonucleases/metabolism , Gene Expression Regulation , Genes, Reporter , HCT116 Cells , Humans , Luciferases/genetics , Luciferases/metabolism , Protein Binding , RNA Stability , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Receptors, CCR4/metabolism , Transcription Factors/metabolism
14.
Cell Rep ; 33(2): 108262, 2020 10 13.
Article En | MEDLINE | ID: mdl-33053355

Current models of mRNA turnover indicate that cytoplasmic degradation is coupled with translation. However, our understanding of the molecular events that coordinate ribosome transit with the mRNA decay machinery is still limited. Here, we show that 4EHP-GIGYF1/2 complexes trigger co-translational mRNA decay. Human cells lacking these proteins accumulate mRNAs with prominent ribosome pausing. They include, among others, transcripts encoding secretory and membrane-bound proteins or tubulin subunits. In addition, 4EHP-GIGYF1/2 complexes fail to reduce mRNA levels in the absence of ribosome stalling or upon disruption of their interaction with the cap structure, DDX6, and ZNF598. We further find that co-translational binding of GIGYF1/2 to the mRNA marks transcripts with perturbed elongation to decay. Our studies reveal how a repressor complex linked to neurological disorders minimizes the protein output of a subset of mRNAs.


Carrier Proteins/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Protein Biosynthesis , RNA Stability , RNA, Messenger/metabolism , Carrier Proteins/chemistry , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , Membrane Proteins/metabolism , Protein Binding , Protein Domains , RNA, Messenger/genetics , Ribosomes/metabolism , Tubulin/metabolism
15.
Biochemistry ; 59(42): 4131-4142, 2020 10 27.
Article En | MEDLINE | ID: mdl-33059440

Proteogenomic identification of translated small open reading frames in humans has revealed thousands of microproteins, or polypeptides of fewer than 100 amino acids, that were previously invisible to geneticists. Hundreds of microproteins have been shown to be essential for cell growth and proliferation, and many regulate macromolecular complexes. One such regulatory microprotein is NBDY, a 68-amino acid component of the human cytoplasmic RNA decapping complex. Heterologously expressed NBDY was previously reported to regulate cytoplasmic ribonucleoprotein granules known as P-bodies and reporter gene stability, but the global effect of endogenous NBDY on the cellular transcriptome remained undefined. In this work, we demonstrate that endogenous NBDY directly interacts with the human RNA decapping complex through EDC4 and DCP1A and localizes to P-bodies. Global profiling of RNA stability changes in NBDY knockout (KO) cells reveals dysregulated stability of more than 1400 transcripts. DCP2 substrate transcript half-lives are both increased and decreased in NBDY KO cells, which correlates with 5' UTR length. NBDY deletion additionally alters the stability of non-DCP2 target transcripts, possibly as a result of downregulated expression of nonsense-mediated decay factors in NBDY KO cells. We present a comprehensive model of the regulation of RNA stability by NBDY.


RNA Caps/chemistry , RNA Caps/metabolism , HEK293 Cells , Humans , Nonsense Mediated mRNA Decay/genetics , Nonsense Mediated mRNA Decay/physiology , Open Reading Frames/genetics , RNA Stability , RNA, Messenger/chemistry , RNA, Messenger/metabolism
16.
Nucleic Acids Res ; 48(4): 1843-1871, 2020 02 28.
Article En | MEDLINE | ID: mdl-31863588

Pumilio is an RNA-binding protein that represses a network of mRNAs to control embryogenesis, stem cell fate, fertility and neurological functions in Drosophila. We sought to identify the mechanism of Pumilio-mediated repression and find that it accelerates degradation of target mRNAs, mediated by three N-terminal Repression Domains (RDs), which are unique to Pumilio orthologs. We show that the repressive activities of the Pumilio RDs depend on specific subunits of the Ccr4-Not (CNOT) deadenylase complex. Depletion of Pop2, Not1, Not2, or Not3 subunits alleviates Pumilio RD-mediated repression of protein expression and mRNA decay, whereas depletion of other CNOT components had little or no effect. Moreover, the catalytic activity of Pop2 deadenylase is important for Pumilio RD activity. Further, we show that the Pumilio RDs directly bind to the CNOT complex. We also report that the decapping enzyme, Dcp2, participates in repression by the N-terminus of Pumilio. These results support a model wherein Pumilio utilizes CNOT deadenylase and decapping complexes to accelerate destruction of target mRNAs. Because the N-terminal RDs are conserved in mammalian Pumilio orthologs, the results of this work broadly enhance our understanding of Pumilio function and roles in diseases including cancer, neurodegeneration and epilepsy.


Drosophila Proteins/genetics , RNA-Binding Proteins/genetics , Transcription Factors/genetics , Animals , Drosophila melanogaster/genetics , Protein Binding , Protein Domains/genetics , RNA Stability/genetics , RNA, Messenger/genetics
17.
Genes Dev ; 33(19-20): 1355-1360, 2019 10 01.
Article En | MEDLINE | ID: mdl-31439631

GIGYF (Grb10-interacting GYF [glycine-tyrosine-phenylalanine domain]) proteins coordinate with 4EHP (eIF4E [eukaryotic initiation factor 4E] homologous protein), the DEAD (Asp-Glu-Ala-Asp)-box helicase Me31B/DDX6, and mRNA-binding proteins to elicit transcript-specific repression. However, the underlying molecular mechanism remains unclear. Here, we report that GIGYF contains a motif necessary and sufficient for direct interaction with Me31B/DDX6. A 2.4 Å crystal structure of the GIGYF-Me31B complex reveals that this motif arranges into a coil connected to a ß hairpin on binding to conserved hydrophobic patches on the Me31B RecA2 domain. Structure-guided mutants indicate that 4EHP-GIGYF-DDX6 complex assembly is required for tristetraprolin-mediated down-regulation of an AU-rich mRNA, thus revealing the molecular principles of translational repression.


Carrier Proteins/chemistry , DEAD-box RNA Helicases/chemistry , Eukaryotic Initiation Factor-4E/metabolism , Gene Expression Regulation/genetics , Models, Molecular , Amino Acid Motifs , Animals , Carrier Proteins/genetics , Cell Line , Drosophila melanogaster/genetics , HEK293 Cells , Humans , Protein Binding , Protein Structure, Quaternary
18.
Nat Commun ; 10(1): 3173, 2019 07 18.
Article En | MEDLINE | ID: mdl-31320642

CCR4-NOT is a conserved multiprotein complex which regulates eukaryotic gene expression principally via shortening of poly(A) tails of messenger RNA or deadenylation. Here, we reconstitute a complete, recombinant human CCR4-NOT complex. Our reconstitution strategy permits strict compositional control to test mechanistic hypotheses with purified component variants. CCR4-NOT is more active and selective for poly(A) than the isolated exonucleases, CCR4a and CAF1, which have distinct deadenylation profiles in vitro. The exonucleases require at least two out of three conserved non-enzymatic modules (CAF40, NOT10:NOT11 or NOT) for full activity in CCR4-NOT. CAF40 and the NOT10:NOT11 module both bind RNA directly and stimulate deadenylation in a partially redundant manner. Linear motifs from different RNA-binding factors that recruit CCR4-NOT to specific mRNAs via protein-protein interactions with CAF40 can inhibit bulk deadenylation. We reveal an additional layer of regulatory complexity to the human deadenylation machinery, which may prime it either for general or target-specific degradation.


Exoribonucleases/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Receptors, CCR4/genetics , Humans , Multiprotein Complexes/chemical synthesis , Multiprotein Complexes/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Poly A/metabolism , RNA, Messenger/genetics , Receptors, CCR4/metabolism , Recombinant Proteins/genetics , Ribonucleases/metabolism , Transcription Factors/metabolism
19.
Nucleic Acids Res ; 47(17): 9282-9295, 2019 09 26.
Article En | MEDLINE | ID: mdl-31340047

XRN1 is the major cytoplasmic exoribonuclease in eukaryotes, which degrades deadenylated and decapped mRNAs in the last step of the 5'-3' mRNA decay pathway. Metazoan XRN1 interacts with decapping factors coupling the final stages of decay. Here, we reveal a direct interaction between XRN1 and the CCR4-NOT deadenylase complex mediated by a low-complexity region in XRN1, which we term the 'C-terminal interacting region' or CIR. The CIR represses reporter mRNA deadenylation in human cells when overexpressed and inhibits CCR4-NOT and isolated CAF1 deadenylase activity in vitro. Through complementation studies in an XRN1-null cell line, we dissect the specific contributions of XRN1 domains and regions toward decay of an mRNA reporter. We observe that XRN1 binding to the decapping activator EDC4 counteracts the dominant negative effect of CIR overexpression on decay. Another decapping activator PatL1 directly interacts with CIR and alleviates the CIR-mediated inhibition of CCR4-NOT activity in vitro. Ribosome profiling revealed that XRN1 loss impacts not only on mRNA levels but also on the translational efficiency of many cellular transcripts likely as a consequence of incomplete decay. Our findings reveal an additional layer of direct interactions in a tightly integrated network of factors mediating deadenylation, decapping and 5'-3' exonucleolytic decay.


DNA-Binding Proteins/genetics , Exoribonucleases/genetics , Microtubule-Associated Proteins/genetics , RNA Caps/genetics , RNA Stability/genetics , Endoribonucleases/genetics , Humans , Multiprotein Complexes/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Proteins/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , Receptors, CCR4/genetics , Repressor Proteins/genetics , Trans-Activators/genetics , Transcription Factors/genetics
20.
J Am Chem Soc ; 141(1): 370-387, 2019 01 09.
Article En | MEDLINE | ID: mdl-30497259

Highly proficient, promiscuous enzymes can be springboards for functional evolution, able to avoid loss of function during adaptation by their capacity to promote multiple reactions. We employ a systematic comparative study of structure, sequence, and substrate specificity to track the evolution of specificity and reactivity between promiscuous members of clades of the alkaline phosphatase (AP) superfamily. Construction of a phylogenetic tree of protein sequences maps out the likely transition zone between arylsulfatases (ASs) and phosphonate monoester hydrolases (PMHs). Kinetic analysis shows that all enzymes characterized have four chemically distinct phospho- and sulfoesterase activities, with rate accelerations ranging from 1011- to 1017-fold for their primary and 109- to 1012-fold for their promiscuous reactions, suggesting that catalytic promiscuity is widespread in the AP-superfamily. This functional characterization and crystallography reveal a novel class of ASs that is so similar in sequence to known PMHs that it had not been recognized as having diverged in function. Based on analysis of snapshots of catalytic promiscuity "in transition", we develop possible models that would allow functional evolution and determine scenarios for trade-off between multiple activities. For the new ASs, we observe largely invariant substrate specificity that would facilitate the transition from ASs to PMHs via trade-off-free molecular exaptation, that is, evolution without initial loss of primary activity and specificity toward the original substrate. This ability to bypass low activity generalists provides a molecular solution to avoid adaptive conflict.


Alkaline Phosphatase/metabolism , Evolution, Molecular , Alkaline Phosphatase/chemistry , Bacteria/enzymology , Catalytic Domain , Kinetics , Models, Molecular , Phylogeny , Sequence Alignment , Substrate Specificity
...